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Abstract: Glutamate receptor, ionotropic, N-methyl-D-aspartate associated protein 1 (GRINA) is a 
member of the NMDA receptors (NMDARs) and is involved in several neurological diseases, which 
governs the key processes of neuronal cell death or the release of neurotransmitters. Upregulation of 
GRINA has been reported in multiple diseases in human beings, such as major depressive disorder 
(MDD) and schizophrenia (SCZ), with which the underlying mechanisms remain elusive. In this 
review, we provide a general overview of the expression and physiological function of GRINA in 
the central nervous system (CNS) diseases, including stroke, depression ,epilepsy, SCZ, and Alz-
heimer’s disease (AD). 
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1. INTRODUCTION 

 NMDARs are one of three pharmacologically distinct 
subtypes of ionotropic receptors that mediate a majority of 
excitatory neurotransmissions in the brain [1]. Activation of 
NMDARs and downstream cellular signaling are important 
for neuronal development, synaptic plasticity, learning and 
memory [2], but also contribute to the pathogenesis of diverse 
neurological disorders, such as AD, epilepsy, stroke and SCZ 
[3-5]. NMDARs are highly permeable to Ca2+, and Ca2+ in-
flux, which is essential for synaptogenesis, experience-
dependent synaptic remodelling and long-lasting changes in 
synaptic efficacy such as long-term potentiation (LTP) and 
long-term depression (LTD) [1]. GRINA is a glutamate re-
ceptor-associated protein and several studies have demon-
strated its dysfunction in the brain which is linked to the oc-
currence of several CNS diseases. As summarized in Table 1, 
the upregulation of GRINA has been reported in the depres-
sion and SCZ. Meanwhile, the neuroprotective function of 
GRINA has been shown to be involved in ischemic stroke 
and post-ischemic unfolded protein response. Herein, we  
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reviewed the existing literature about GRINA, deciphered 
the functions of GRINA through its domains, and discussed 
its roles in the CNS diseases.  

2. DOMAINS AND EXPRESSION OF GRINA 

 Human GRINA is located at the chromosome region 
8q24.3, near the subtelomere [9], and encodes a 371 amino 
acid protein with a predicted molecular weight of 41.2 kDa. 
Protein domain prediction (DOMPRED) revealed a critical 
region which containing the seven-transmembrane α-helices 
(Fig. 1). In order to understand the characterization of 
GRINA domains, we analyzed the NCBI’s Conserved Do-
mains Database (CDD) [13]. GRINA displayed two major 
domains: a Pro-rich domain (fragment 39-139) within an N- 
terminal tail and an LFG-like domain (fragment 151-367), 
belonging to the BI-1-like superfamily, across the trans-
membrane region [14]. 

 Nielsen and colleagues measured the expression of 
GRINA by Northern blot in different murine tissues [15]. 
They observed a broad expression pattern, strongly ex-
pressed in the brain and kidney, and also in the cortex, cere-
bellum, hindbrain and basal ganglia, as well as other organs 
like the testes and spleen. GRINA is expressed throughout 
the brain but at the highest levels in the hippocampus, sug-
gesting that GRINA is likely to play crucial roles in the hip-
pocampus associated neurological diseases, as discussed in 
more detail. 
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2.1. Grina in Major Depressive Disorder 

 Major depressive disorder (MDD) is one of the most 
prevalent mood disorders and ranks first among all neuro-
logical disorders in terms of disability-adjusted life years 
[16]. Although the principal cause of this disorder is largely 
unknown, some depressed patients show a remarkable  
improvement following the administration of NMDARs 
channel antagonist [17, 18]. A recent study indicated that  
an NMDAR antagonist ketamine enhances visual sensory 
evoked potential LTP in patients with MDD [19], and blocks 
bursting in the lateral habenula to rapidly relieve depression 
[20]. Similar to ketamine, other NMDAR antagonists, in-
cluding MK-801 [21] and AP-5 [22] mimicked ketamine’s 
effect in inducing AMPAR-mediated synaptic potentiation. 
This finding was hypothesized to indicate that ketamine, via 
blocking the NMDAR at rest, drives synaptic potentiation, 
leading to synaptic plasticity changes that might be relevant 
to the antidepressant actions of NMDAR antagonists [23]. 
 Goswami DB et al., used brain samples from MDD pa-
tients and found that GRINA is increased in the prefrontal 
cortex of MDD subjects [6]. In the same study, a majority of 
the NMDA receptor subunits (GRINA, GRIN2A, 
GRINL1A) up-regulated among the suicides with major de-
pression versus the controls or the suicides without history of 
major depression [7]. These results suggest that the expres-
sion of GRINA is associated with the pathophysiology of 
depression and is a critical approach for novel antidepressant 
treatments. 

2.2. Grina in Schizophrenia 

 Schizophrenia (SCZ) is a chronic neuropsychiatric disor-
der associated with affective, cognitive, neuromorphological, 
and molecular abnormalities [24]. Even though the etiology 
of SCZ is uncertain, it is believed to be a neurodevelopmen-
tal disorder that results from a combination of environmental 
insults and genetic vulnerabilities [25]. NMDA receptor is a 
major subtype of glutamate receptor that mediates fast syn-
aptic transmission in the CNS. Several studies have shown 
that NMDA hypofunction is tightly linked to SCZ [26-28]. 
One study demonstrated the differential effect of NMDA 
receptor GluN2C and GluN2D subunit ablation on behavior 

and channel blocker-induced SCZ phenotypes [29]. Notably, 
NMDA receptor antagonists induced SCZ-like behaviors in 
animal models [30] and psychosis impairment in normal 
human subjects [31]. Hao et al., reported that NMDARs may 
be potential therapeutic targets to prevent disease develop-
ment during asymptomatic periods of SCZ and may serve as 
targets for preventive and/or therapeutic strategies for SCZ 
[32]. 
 The region in the N terminal domain of GRINA (frag-
ment 63-96) shows homology with the 33-mer gliadin pep-
tide [33]. Based on this homology, the 33-mer gliadin pep-
tide would act as a natural antagonist, interfering with 
GRINA and altering its functions. This biochemical mecha-
nism would be relevant in the extraintestinal manifestations 
of SCZ [33]. Indeed, about one-third of people with SCZ 
have elevated IgG antibodies to gliadin (AGA IgG) [14]. 
Supporting this association, a recent study with 80 healthy 
controls and 160 patients with SCZ showed that GRINA IgG 
was higher in SCZ patients than in healthy controls, and that 
the presence of anti-GRINA antibodies was associated with 
anti-AGA antibodies [8]. These results support the possible 
role of GRINA in SCZ. However, further research works 
required to elucidate their exact mechanisms in SCZ. 

2.3. Grina in Epilepsy 

  Epilepsy is one of the most common neurological disor-
ders that are characterized by abrupt, recurrent, and synchro-
nous discharges of the brain [34]. Previous studies have 
found a surprising number of NMDARs mutations in seizure 
disorders, causing various childhood epilepsy syndromes 
[35, 36]. Secondly, a sharp increase in the extracellular con-
centration of glutamate in the focal hemisphere has been 
observed immediately prior to the onset of an electrographic 
seizure [9]. Finally, glutamate antagonists selective for 
NMDARs act as potent anticonvulsants in a range of epilep-
sies [37, 38]. These findings suggest that NMDARs appear 
to be a locus for epilepsy. 

  A form of inherited epilepsy is benign familial neonatal 
convulsions (BFNC) localized to chromosome 8. GRINA 
mapped to 8q24 was considered as a candidate for the epi-
leptic disorder [9]. Another recent study found that the 

Table 1. Summary of studies describing alterations of GRINA in CNS diseases. 

Disease Name Study Models Conclusions References 

Depression Clinical patients GRINA as novel factors associated with major depressive disorder Goswami DB et al. [6] 

Depression Clinical patients GRINA up-regulated among the suicides with major depression Sequeira A et al. [7] 

Schizophrenia Clinical patients Persons with schizophrenia had significantly increased levels of GRINA Čiháková D et al. [8] 

Epilepsy In-vitro cell culture GRINA mapped to the same region of chromosome 8 as BFNC Lewis TB et al. [9] 

Epilepsy Clinical patients GRINA associated with severe mental retardation and epilepsy Bonaglia MC et al. [10] 

Stroke In-vivo mouse model 
In-vitro cell culture 

GRINA involved in EPO-mediated neuroprotection after stroke Habib P et al. [11] 

Stroke In-vivo mouse model 
In-vitro cell culture 

GRINA plays a crucial role in post-ischemic unfolded protein response Habib P et al. [12] 
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GRINA within the 2.3Mb duplicated segment of chromo-
some 8q24.3 is associated with severe mental retardation and 
epilepsy [10]. These findings suggested the potential role of 
GRINA in ameliorating epilepsy via targeting the balance 
between inhibition and excitation. 

2.4. Grina in Stroke 

 Stroke is the second leading cause of death and the third 
most common cause of disability worldwide [39]. The two 
main types of stroke are ischemic and hemorrhagic. Ischemic 
strokes comprise about 87% of all strokes [40]. Ischemic 
stroke triggers a complex series of pathophysiological 
events, including the accumulation of synaptic and extrasyn-
aptic glutamate, ion channel dysfunction, inflammation and 
so on, eventually leading to neuronal cell death and ischemic 
brain injury [41, 42]. NMDARs -mediated excitotoxicity is 
the leading cause of neuronal cell death in ischemic stroke 
[43]. It is well documented that DAPK1 interaction with 
NMDA receptor NR2B subunits mediates brain damage in 
stroke [44]. The genetic mutation of GluN2B protects brain 
cells against stroke damages [45]. Differential roles of 
NMDA receptor subtypes in ischemic neuronal cell death 

and ischemic tolerance were found in other recent research 
[46, 47]. GRINA is a glutamate receptor-associated protein 
and several studies have demonstrated that GRINA has a 
highly potent protective effect, preventing mice from cere-
bral ischemia-induced cell death [11] and post-ischemic un-
folded protein response (UPR) [12]. 
 The LFG-like domain gives GRINA an alternative name 
LFG1. As commented before, mammalian members of the 
BI-like superfamily include transmembrane proteins related 
to cell death and survival [48]. Previous studies have pro-
vided evidence for the critical role of TMBIM members in 
the transient brain ischemia. Endoplasmic reticulum protein 
BI-1 modulates unfolded protein response signaling and pro-
tects against traumatic brain injury and apoptotic cell death 
[49, 50]. Fas apoptotic inhibitory molecule 2 (Faim2) has 
been shown to modulate hippocampal neuroplasticity and is 
neuroprotection in cerebral ischemia [51-53]. 
 Overall, these findings strongly suggest that TMBIM 
members GRINA, BI-1 and Faim2 could be new therapeutic 
approaches to decrease excitotoxicity-induced neuronal cell 
death in stroke. 

 
Fig. (1). Secondary structure prediction (PSIPRED) cartoon of human GRINA. (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 
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2.5. Grina in Alzheimer’s Disease 

 Alzheimer’s disease (AD) is the most common neurode-
generative disease and is characterized by cognitive disorder 
and memory dysfunction in the elderly population, affecting 
almost 40 million people worldwide [54]. The pathophysiol-
ogy of AD includes the appearance of senile plaques consist-
ing of Aβ and neurofibrillary tangles containing phosphory-
lated tau, leading to the substantial loss of synaptic profiles 
[55]. Accumulating evidence has suggested that NMDARs 
dysfunction is tightly linked to AD [5, 56, 57]. In a recent 
study by Dong et al. [58], intracerebroventricularly injected 
IL-1β induced calcium overload and endoplasmic reticulum 
stress, and NMDAR antagonist MK801 pretreatment signifi-
cantly attenuated neuronal apoptosis and NMDAR up-
regulation [59]. Another recent study found that NMDARs 
activation mediated by Aβ is involved in Aβ-induced mito-
chondrial toxicity and neuronal dysfunction [60]. Overall, 
these findings strongly suggest the important function of 
NMDARs in AD. 
 Marked and sustained changes in intracellular calcium 
signaling occur prior to cognitive decline and extensive neu-

ronal death in AD [61]. GRINA regulates intracellular cal-
cium homeostasis by interaction with IP3R, modulation the 
ER Ca2+ release [62, 63]. Recent studies have found that 
GRINA modulates voltage-gated CaV2.2 Ca2+ channels in a 
G-protein-like manner [64]. Calcium entry through CaV2.2 
channels is a major mechanism triggering transmitter release 
in certain synapses, indicating that GRINA-mediated cytosolic 
Ca2+ overload is associated with synaptic transmission in 
AD. In another study, GRINA was found to contain three 
potential ALG2-binding motifs (ABM1) that interact with 
the longest isoform of ALG2. Interestingly, ALG2 is among 
the top RAR-related orphan receptor A (RORA)-linked genes 
with an elevated expression in the hippocampus of patients 
with AD [65]. Furthermore, an alternative splice variant lack-
ing the sequence PPPNPGYPGGPQPPMPPYAQ(fragment 15-
34) has been found in AD patients’ cortex (NCBI accession 
AK294127), but its relevance is still unknown [14]. Recent 
observations indicate a decreased cancer risk in patients with 
AD. GRINA modulates aerobic glycolysis and promotes 
tumor progression in gastric cancer [66]. Based on these 
findings, it is conceivable that GRINA plays a crucial role in 
AD.Moreover, further research is required to evaluate 

 

Fig. (2). The role of GRINA in central nervous system diseases. ER: Endoplasmic reticulum; Mito: mitochondrial; CaN: calcineurin; 
MCU:mitochondrial Ca2+ uniporter; PTP: permeability-transition pore; RYR: ryanodine receptor; IP3R: inositol-1,4,5- triphosphate receptor; 
LTD: long-term depression; LTP: long-term potentiation; AD: Alzheimer’s disease. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 
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whether the overexpression of GRINA can be neuroprotec-
tive against Aβ-induced cytosolic Ca2+ overload in animal 
models. 

CONCLUSION 

 Currently available data indicate the significant regula-
tory roles of GRINA in the pathogenesis of glutamate recep-
tor-dependent neurological disorders (Fig. 2). It has been 
reviewed here that the GRINA contributes to neuroprotec-
tion, synaptic transmission and plasticity due to its two con-
served domains (Pro-rich domain and LFG-like domain). 
Such data provide new insights into the GRINA in neuro-
logical diseases, suggesting that the modulation of GRINA 
will hopefully lead to the development of therapeutically 
effective drugs. While the focus of this review was the role 
of GRINA in CNS diseases, more research should be di-
rected towards the DNA binding and vesicle transport, or the 
pathologic function of GRINA in many other human dis-
eases (gastric cancer, osteoarthritis and celiac disease). 
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